Search results for "femtosecond phenomena"

showing 10 items of 11 documents

Emission of real phonons due to electron's self-dressing in a covalent crystal

2011

A slow monoelectronic excitation in a covalent crystal at the temperature T=0 is analyzed. The interaction with zero-point longitudinal acoustic phonons leads to the formation of a dressed electronic state at an energy level lower than that of the initial bare state. This aspect of the dressing process is described here by hypothesizing that the excess of energy is released with the emission of real phonons. Specifically, this paper considers the transition probability from the bare monoelectronic state to a dressed state of the electron accompanied by real phonons and a deformation field. The spectrum of the real phonons emitted during the electronic self-dressing is calculated by applying…

Femtosecond phenomenaPhonon-electron interactionDressed stateSettore FIS/03 - Fisica Della Materia
researchProduct

Measurement of high order Kerr refractive index of major air components

2009

International audience; We measure the instantaneous electronic nonlinear refractive index of N2 , O2 , and Ar at room temperature for a 90 fs and 800 nm laser pulse. Measurements are calibrated by post-pulse molecular alignment through a polarization technique. At low intensity, quadratic coefficients n2 are determined. At higher intensities, a strong negative contribution with a higher nonlinearity appears, which leads to an overall negative nonlinear Kerr refractive index in air above 26 TW/cm2 .

Kerr effectMaterials science[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Physics::Optics01 natural sciences010309 opticsOpticsSelf-focusing0103 physical sciencesUltrafast nonlinear opticsZ-scan technique[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]010306 general physicsSelf-phase modulationOptical Kerr effect[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignment320.2250 350.5400 260.5950business.industryFemtosecond phenomenaCross-phase modulationAirSelf-focusingPolarization (waves)Atomic and Molecular Physics and OpticsRefractometryMagneto-optic Kerr effectPlasmasGasesbusinessRefractive indexAlgorithmsEnvironmental Monitoring
researchProduct

Measurement of high order Kerr refractive index of major air components: erratum

2010

A clarification is missing concerning the high order Kerr non-linearities deduced from our experimental data published in [Opt. Express 17, 13429-13434 (2009)]. Here, we rectify this omission by making explicit the distinction between cross-Kerr and Kerr effects, and by extrapolating the value of the nonlinear refractive index for the last effect. Since the occurrence of sign inversion in the Kerr effect is not affected, the overall report in [Opt. Express 17, 13429-13434] remains valid.

Kerr effect[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph](320.2250) Femtosecond phenomena; (350.5400) Plasmas; (190.7110) Ultrafast nonlinear optics; (260.5950) Self-focusing01 natural sciences010309 opticsOptics0103 physical sciencesZ-scan techniqueHigh order[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]010306 general physicsfemtosecondLaser beamsplasmaPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignmentbusiness.industrySelf-focusingNonlinear refractive indexPolarization (waves)Atomic and Molecular Physics and Opticslaser filamentationbusinessRefractive index) Ultrafast nonlinear optics
researchProduct

General approach to spatiotemporal modulational instability processes

2011

International audience; In this article, we derive the general exact solution of the modulation instability gain. The solution described here is valid for 1-D, 2-D, and 3-D cases considering any temporal response function of the medium and with possible higher order Kerr nonlinearities. In particular, we show that the gain induced by modulation instability is initial condition dependent, while the usual calculations do not lead to such a dependence. Applications for current and high-interest nonlinear propagation problems, such as 1-D optical fiber propagation with delayed Raman response and 2-D filamentation in gases, are investigated in detail. More specifically, we demonstrate that the 2-D …

Kerr effect[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Modulational instability01 natural sciencesInstabilityLaser filamentation010309 opticsFilamentationSelf-focusing0103 physical sciencesInitial value problemUltrafast nonlinear optics010306 general physicsOptical Kerr effect42.65.Ky 42.65.Sf 42.81.DpPhysicsMolecular alignment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Femtosecond phenomenaSelf-focusingAtomic and Molecular Physics and OpticsNonlinear systemModulational instabilityClassical mechanicsModulationPlasmasQuantum electrodynamics
researchProduct

Spectral dependence of purely-Kerr driven filamentation in air and argon

2010

5 pags, 4 figs.-- PACS number(s): 42.65.Jx, 42.65.Tg, 78.20.Ci. -- Publisher error corrected 27 September 2010, Erratum Phys. Rev. A 82, 039905 (2010): https://doi.org/10.1103/PhysRevA.82.033826

Kerr effect[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]chemistry.chemical_elementFOS: Physical sciencesPhysics::Opticsddc:500.201 natural sciencesLaser filamentationSpectral line010309 opticsFilamentationPhysics::Plasma PhysicsIonizationSelf-focusing0103 physical sciencesSelf focusing and defocusingOptical solitonsOptical constantsUltrafast nonlinear optics010306 general physicsSelf-phase modulationOptical Kerr effectPhysicsArgonMolecular alignment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Femtosecond phenomena42.65.Jx 42.65.Tg 78.20.CiSelf-focusingSelf-phase modulationBeam trappingAtomic and Molecular Physics and OpticsWavelengthchemistryPlasmasAtomic physicsPhysics - OpticsOptics (physics.optics)
researchProduct

Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers

2009

We theoretically identify some photonic-crystal-fiber structures, made up of soft glass, that generate ultrawide (over an octave) and very smooth supercontinuum spectra when illuminated with femtosecond pulsed light. The design of the fiber geometry in order to reach a nearly ultraflattened normal dispersion behavior is crucial to accomplish the above goal. Our numerical simulations reveal that these supercontinuum sources show high stability and no significant changes are detected even for fairly large variations of the incident pulse. Ministerio de Ciencia e Innovación (TEC2008-05490) and Generalitat Valenciana (GV/2007/043).

Materials scienceNonlinear opticsPhysics::OpticsOctave (electronics)Sensitivity and SpecificityPulse propagation and temporal solitonsOpticsDispersion (optics)Computer SimulationSelf-phase modulationOptical FibersPhotonic crystalÓpticaPhotonsbusiness.industryFemtosecond phenomenaReproducibility of ResultsNonlinear opticsEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisFibersFemtosecondComputer-Aided DesignOptoelectronicsGlassCrystallizationbusinessPhotonic-crystal fiber
researchProduct

Probing ultrafast thermalization with field-free molecular alignment

2012

International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.

Physicscollisional dynamics010304 chemical physicsField (physics)ultrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]femtosecond phenomenaRelaxation (NMR)ultrafast relaxationTracking (particle physics)Laser01 natural sciences37.10.Vz 34.50.Ez 42.50.MdAtomic and Molecular Physics and Opticslaw.inventionPulse (physics)Molecular dynamicsThermalisationlaw0103 physical sciencesAtomic physics010306 general physicsUltrashort pulsemolecular alignment
researchProduct

Observation of laser-induced field-free permanent planar alignment of molecules

2011

International audience; Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the…

[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Linear molecular geometry01 natural sciencesMolecular physicslaw.invention010309 opticsRotational dynamicsPlanarOpticslaw0103 physical sciencesUltrafast nonlinear optics010306 general physicsOptical Kerr effectPhysicsNumber densityBirefringence[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignmentbusiness.industryFemtosecond phenomenaRotational temperature3710Vz 4250Hz 4250MdLaserPolarization (waves)Atomic and Molecular Physics and OpticsOptical polarigraphyFemtosecondbusiness
researchProduct

Higher-order Kerr terms allow ionization-free filamentation in gases

2010

International audience; We show that higher-order nonlinear indices (n4 , n6 , n8 , n10) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.

[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Molecular alignmentPhysics::Plasma PhysicsFemtosecond phenomenaPlasmasSelf-focusing[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Physics::Optics42.65.Jx 37.10.Vz 42.65.Tg 78.20.CiUltrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Optical Kerr effectLaser filamentation
researchProduct

High-order Kerr nonlinearity of air calibrated with transient molecular alignment

2009

Talk given by O. Faucher; International audience; Nonlinear electronic Kerr index of the major air constituents has been measured up to high order terms using transient molecular alignment as a reference. Sign reversal associated to negative nonlinearity is observed above a pulse intensity of 26 TW/cm^2.

[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph](320.2250) Femtosecond phenomena; (350.5400) Plasmas; (190.7110) Ultrafast nonlinear optics; (260.5950) Self-focusing[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]
researchProduct