Search results for "femtosecond phenomena"
showing 10 items of 11 documents
Emission of real phonons due to electron's self-dressing in a covalent crystal
2011
A slow monoelectronic excitation in a covalent crystal at the temperature T=0 is analyzed. The interaction with zero-point longitudinal acoustic phonons leads to the formation of a dressed electronic state at an energy level lower than that of the initial bare state. This aspect of the dressing process is described here by hypothesizing that the excess of energy is released with the emission of real phonons. Specifically, this paper considers the transition probability from the bare monoelectronic state to a dressed state of the electron accompanied by real phonons and a deformation field. The spectrum of the real phonons emitted during the electronic self-dressing is calculated by applying…
Measurement of high order Kerr refractive index of major air components
2009
International audience; We measure the instantaneous electronic nonlinear refractive index of N2 , O2 , and Ar at room temperature for a 90 fs and 800 nm laser pulse. Measurements are calibrated by post-pulse molecular alignment through a polarization technique. At low intensity, quadratic coefficients n2 are determined. At higher intensities, a strong negative contribution with a higher nonlinearity appears, which leads to an overall negative nonlinear Kerr refractive index in air above 26 TW/cm2 .
Measurement of high order Kerr refractive index of major air components: erratum
2010
A clarification is missing concerning the high order Kerr non-linearities deduced from our experimental data published in [Opt. Express 17, 13429-13434 (2009)]. Here, we rectify this omission by making explicit the distinction between cross-Kerr and Kerr effects, and by extrapolating the value of the nonlinear refractive index for the last effect. Since the occurrence of sign inversion in the Kerr effect is not affected, the overall report in [Opt. Express 17, 13429-13434] remains valid.
General approach to spatiotemporal modulational instability processes
2011
International audience; In this article, we derive the general exact solution of the modulation instability gain. The solution described here is valid for 1-D, 2-D, and 3-D cases considering any temporal response function of the medium and with possible higher order Kerr nonlinearities. In particular, we show that the gain induced by modulation instability is initial condition dependent, while the usual calculations do not lead to such a dependence. Applications for current and high-interest nonlinear propagation problems, such as 1-D optical fiber propagation with delayed Raman response and 2-D filamentation in gases, are investigated in detail. More specifically, we demonstrate that the 2-D …
Spectral dependence of purely-Kerr driven filamentation in air and argon
2010
5 pags, 4 figs.-- PACS number(s): 42.65.Jx, 42.65.Tg, 78.20.Ci. -- Publisher error corrected 27 September 2010, Erratum Phys. Rev. A 82, 039905 (2010): https://doi.org/10.1103/PhysRevA.82.033826
Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers
2009
We theoretically identify some photonic-crystal-fiber structures, made up of soft glass, that generate ultrawide (over an octave) and very smooth supercontinuum spectra when illuminated with femtosecond pulsed light. The design of the fiber geometry in order to reach a nearly ultraflattened normal dispersion behavior is crucial to accomplish the above goal. Our numerical simulations reveal that these supercontinuum sources show high stability and no significant changes are detected even for fairly large variations of the incident pulse. Ministerio de Ciencia e Innovación (TEC2008-05490) and Generalitat Valenciana (GV/2007/043).
Probing ultrafast thermalization with field-free molecular alignment
2012
International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.
Observation of laser-induced field-free permanent planar alignment of molecules
2011
International audience; Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the…
Higher-order Kerr terms allow ionization-free filamentation in gases
2010
International audience; We show that higher-order nonlinear indices (n4 , n6 , n8 , n10) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.
High-order Kerr nonlinearity of air calibrated with transient molecular alignment
2009
Talk given by O. Faucher; International audience; Nonlinear electronic Kerr index of the major air constituents has been measured up to high order terms using transient molecular alignment as a reference. Sign reversal associated to negative nonlinearity is observed above a pulse intensity of 26 TW/cm^2.